Euclidean matchings and minimality of hyperplane arrangements

نویسندگان

چکیده

We construct a new class of maximal acyclic matchings on the Salvetti complex locally finite hyperplane arrangement. Using discrete Morse theory, we then obtain an explicit proof minimality complement. Our construction provides interesting insights also in well-studied case arrangements, and gives nice geometric description Betti numbers In particular, solve conjecture Drton Klivans characteristic polynomial reflection arrangements. The minimal is compatible with restrictions, this allows us to prove isomorphism Brieskorn’s Lemma by simple bijection critical cells. Finally, line describe algebraic which computes homology coefficients abelian local system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morse Theory, Milnor Fibers and Minimality of Hyperplane Arrangements

Through the study of Morse theory on the associated Milnor fiber, we show that complex hyperplane arrangement complements are minimal. That is, the complement of any complex hyperplane arrangement has the homotopy type of a CW-complex in which the number of p-cells equals the p-th betti number. Combining this result with recent work of Papadima and Suciu, one obtains a characterization of when ...

متن کامل

Combinatorial Morse theory and minimality of hyperplane arrangements

In [DP03], [Ra02] it was proven that the complement to a hyperplane arrangement in C is a minimal space, i.e. it has the homotopy type of a CW -complex with exactly as many i-cells as the i-th Betti number bi. The arguments use (relative) Morse theory and Lefschetz type theorems. This result of ”existence” was refined in the case of complexified real arrangements in [Yo05]. The author consider ...

متن کامل

Random Walk and Hyperplane Arrangements

Let C be the set of chambers of a real hyperplane arrangement. We study a random walk on C introduced by Bidigare, Hanlon, and Rockmore. This includes various shuuing schemes used in computer science, biology, and card games. It also includes random walks on zonotopes and zonotopal tilings. We nd the stationary distributions of these Markov chains, give good bounds on the rate of convergence to...

متن کامل

Branched Polymers and Hyperplane Arrangements

We generalize the construction of connected branched polymers and the notion of the volume of the space of connected branched polymers studied by Brydges and Imbrie [BI], and Kenyon and Winkler [KW] to any hyperplane arrangement A. The volume of the resulting configuration space of connected branched polymers associated to the hyperplane arrangement A is expressed through the value of the chara...

متن کامل

Artin groups and hyperplane arrangements

These are the notes of a mini-course given at the conference “Arrangements in Pyrénées”, held in Pau (France) from 11th to 15th of June, 2012. Definition. Let S be a finite set. A Coxeter matrix on S is a square matrix M = (ms,t)s,t∈S indexed by the elements of S and satisfying: (a) ms,s = 1 for all s ∈ S; (b) ms,t = mt,s ∈ {2, 3, 4, . . . } ∪ {∞} for all s, t ∈ S, s 6= t. A Coxeter matrix is u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2021

ISSN: ['1872-681X', '0012-365X']

DOI: https://doi.org/10.1016/j.disc.2020.112232